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ABSTRACT

Gesture recognition has become increasingly important in
human-computer interaction (HCI) and can support a broad
array of emerging applications, such as smart home, virtual
reality, and mobile gaming. Traditional approaches usually
rely on dedicated sensors that are worn by the user or cam-
eras that require line of sight. In this paper, we present
fine-grained finger gesture recognition by using a single com-
modity WiFi device without requiring user to wear any sen-
sors. Our low-cost system, WiFinger, takes advantages of
the fine-grained Channel State Information (CSI) available
from commodity WiFi devices and the prevalence of WiFi
network infrastructures. It senses and identifies subtle move-
ments of finger gestures by examining the unique patterns
exhibited in the detailed CSI. In WiFigner, we devise envi-
ronmental noise removal mechanism to mitigate the effect of
signal dynamic due to the environment changes. Moreover,
we propose to capture the intrinsic gesture behavior to deal
with individual diversity and gesture inconsistency. Our ex-
perimental evaluation in both home and office environments
demonstrates that our system can achieve over 93% recog-
nition accuracy and is robust to both environment changes
and individual diversity. Results also show that our system
can work with WiFi beacon signals and provides accurate
gesture recognition under NLOS scenarios.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous
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WiFi; Channel State Information (CSI); Gesture Recog-
nition; Finger Gesture

1. INTRODUCTION
In recent years, gesture recognition is gaining increasing

importance in human-computer interaction (HCI). Compar-
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ing to traditional techniques using peripheral devices such
as mouse or keyboard, gesture-based interaction serves as a
more convenient and natural means for users to interact with
computers. Gesture made with fingers is particularly cru-
cial as our HCI bandwidth is the highest there due to finger
dexterity [14]. Recognizing finger gesture is also extremely
compelling for interacting with mobile and wearable devices
and performing finger control in emerging applications, such
as smart home, virtual reality, and mobile gaming. Google’s
Soli radar chip [3], for example, is recently developed for the
wearables to recognize finger gestures.

Prior work in gesture recognition mainly relies on pre-
installed depth and infrared cameras (e.g., kinect, leap mo-
tion) [1, 4, 5, 24, 27] or dedicated sensors (e.g., RFID, gloves,
motion sensors) that are worn by the user [9, 20, 29, 12,
22, 33, 2, 21]. These approaches however require significant
deployment overhead and incur non-negligible cost. In ad-
dition, the camera-based solution cannot work in non-line-
of-sight (NLOS) scenarios. Recently, Radio Frequency (RF)
based gesture recognition using either specialized [23, 8, 16,
7, 11] or commodity RF devices [30, 31, 19, 18, 28, 10] have
drawn considerable attention as they don’t require users to
wear any physical sensors and can work under NLOS sce-
narios. These systems however only provide coarse-grained
gesture recognition such as body activities [23, 8, 7, 30,
31, 34] or hand movements [16, 19, 18, 28]. For example,
WiDraw [28] utilize a dense deployment of 25 RF devices
to recognize large-scale hand movements. While WiKey [10]
and the system proposed by Chen et al. [11] can recognize
specific finger movements of typing, WiKey [10] requires the
WiFi packets to be transmitted at outrageously high rate of
2500 packets/second (i.e., highest possible rate) and is very
sensitive to environmental changes, and the system [11] re-
lies on specialized software-defined radio to extract radio
wave features that are not reported in commodity RF de-
vice. Such limitations and the high infrastructure cost make
these methods hard to deploy for gesture recognition in a
practical and user friendly system.

In this paper, we demonstrate that the commodity WiFi
can be exploited for fine-grained finger gesture recognition
which is both easily deployable and low-cost. Our pro-
posed system takes advantages of the fine-grained wireless
channel measurement of Channel State Information (CSI)
and the prevalence of WiFi network infrastructure. First,
the detailed physical layer measurement of CSI is internally
tracked by IEEE 802.11 MIMO and is readily available in
commodity WiFi devices. Such fine-grained CSI is able to
detect the minute environment changes that alter signal
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propagation and multipath. It is thus capable of captur-
ing the subtle movements of fingers to provide fine-grained
gesture recognition. Leveraging detailed CSI to recognize
gestures doesn’t require users to wear any sensors and can
work under both LOS and NLOS scenarios. Second, the
prevalence of WiFi network infrastructures enables the pro-
posed system to reuse existing WiFi devices and networks
without requiring dedicated or specialized hardware. The
system could reuse existing WiFi signals, for example, the
beacon signals of WiFi networks, to perform finger gesture
recognition. Reusing existing WiFi infrastructures not only
advances and extends the applications that could be sup-
ported by WiFi networks but also enables easy and large-
scale deployment of the proposed system due to the prolif-
eration of WiFi devices and networks [6].

In particular, our system, WiFinger, utilizes only a sin-
gle WiFi device with its connected AP to recognize finger
gestures by examining the unique patterns exhibited in the
detailed CSI. Accurately discerning the finger gestures is
challenging, however, in this single WiFi device recognition
system, because the multipath, shadowing, and fading com-
ponents of signal could be dynamic due to the environment
changes. For example, people walking around or moved fur-
niture could change the multipath environment and affect
the signal propagation. Such changes could also be sensed
by the detailed CSI and may distort the CSI pattern of the
finger gesture. Moreover, there exists individual diversity of
each user such as the finger length, movement speed, and
gesture consistency. Even for the same user, the same finger
gesture could be slightly different from time to time due to
the lack of consistency.

To handle environmental changes, we propose an environ-
mental noise removal mechanism which employs multipath
mitigation and wavelet based denoising to filter out the envi-
ronmental noises while trying to keep the CSI patterns only
resulted from the finger gestures. In particular, the multi-
path mitigation removes the signal components that arrive
at the receiver through longer multipath propagations which
are more likely affected by the changed environments, while
the wavelet based denoising is used to further remove the
high frequency noises while trying to keep sufficient details
of CSI pattern for differentiating similar gestures. To deal
with the individual diversity and gesture inconsistency, we
propose to identify the principal components of the CSI pat-
tern and to choose critical subcarriers that are sensitive to
finger gesture for accurate gesture recognition. Specifically,
the principal component identification exploits the idea of
the intrinsic gesture behavior of the user [25] and extracts
the gesture components which are invariant across the same
set of finger gestures that one user performed for accurate
gesture recognition.

We experimentally evaluate WiFinger in both office and
home environments with typical finger gestures including
zoom in/out, circle left/right, swipe left/right, and flip up/down.
Result shows that our system achieves overall accuracy over
93% and is robust to both environment changes and individ-
ual diversity. It also shows that our system can work with
WiFi beacon signals and provides accurate gesture recogni-
tion under NLOS scenario. The contributions of our work
are summarized as follows:

• We show that the commodity WiFi can be reused to
capture subtle changes of finger movements for fine-
grained gesture recognition. Such approach doesn’t

require any dedicated or specialized devices and can
work under NLOS scenarios.

• We develop WiFinger which runs on a single WiFi de-
vice with its connected AP and extracts detailed CSI
to profile the patterns of finger gestures. WiFinger, as
a software-only solution that works with commodity
WiFi devices, is both easily deployable and low-cost.

• We devise environmental noise removal mechanism to
mitigate the effect of the environment changes. Such
a method enables the WiFinger’s robustness to vari-
ous environmental interference such as people walking
around and furniture changes.

• We exploit the principal component of the CSI pat-
tern and select critical subcarriers for accurate ges-
ture recognition. The principal component extraction
makes our system resilient to individual diversity and
gesture inconsistency.

• We conduct extensive experiments in both office and
home environments with multiple participants under
various conditions. The results show that WiFinger
achieves over 93% recognition accuracy and can work
with existing WiFi beacon traffic.

2. RELATED WORK
In general, the approaches for gesture recognition can be

divided into three categories: wearable sensor based, camera
based, and RF signal based.

Wearable sensor based. Many research efforts have
been done by using dedicated sensors worn by users’ hand
for gesture recognition. For example, Risq [22] utilizes in-
ertial sensors on a wristband to recognize smoking gestures.
Nelson et al. [20] developed a system using multi-sensor
glove to recognize paralysis patients’ gestures. Applications
like text input using hand gestures also attract many at-
tentions. PhonePoint Pen [9] for example recognizes hu-
man hand writing by holding mobile phone in hands. RF-
IDraw [29] tracks hand or finger movements by attaching
RFID to user’s fingers. Other wearable devices such as
smartwatch [33] or wearable ring [12, 21] can also be used
to enable text input recognition by hand movements. These
methods however all require user to wear physical sensors.

Camera based. Early works [24, 27] has laid solid foun-
dation for gesture recognition using dedicated cameras. Re-
cent advancement in imaging technology enables depth or
infrared cameras for gesture recognition, such as the ones
used in Microsoft Kinect [1], Leap Motion [4] and WiiU [5].
Although these approaches do not require user to wear any
sensors, they rely on dedicated hardware which incurs non-
negligible cost and installation overhead, and only work un-
der LOS scenario.

RF signal based. The RF signal based methods are
most related to our work. Without requiring user to wear
any physical sensors, RF based approaches can sense user
motion under both LOS and NLOS scenarios. By using spe-
cialized RF devices, systems like WiSee [23] WiTrack [7] and
Wi-Vi [8] are able to track large scale human movements.
AllSee [16] and the system proposed by Chen et al. [11] are
capable of tracking hand movements and even the specific
finger movements of typing. Those systems however all rely
on specialized hardware. Although the systems (e.g., E-
eyes and CARM) [34, 23, 8, 7, 30, 31, 16, 19, 18, 28] use
commodity WiFi devices, they can only identify large scale
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(a) CSI measurements of Circle Left

(b) CSI measurements of Zoom In

Figure 1: Illustration of CSI measurements for two

different finger gestures.

human activities or hand movements. While WiKey [10]
can recognize some specific finger motions, it requires the
WiFi packets to be transmitted at outrageously high rate
of 2500 packets/second and is very sensitive to environment
changes, which largely limits its practical applications.

Comparing to existing approaches, WiFinger can provide
fine-grained finger gesture recognition using a single com-
modity WiFi device with its connected AP. It is a software-
only solution that works with WiFi beacon signals, which is
both easily deployable and low-cost.

3. SYSTEM DESIGN
To build an easily deployable and low-cost solution for

fine-grained gesture recognition, we devise an approach that
senses and identifies subtle movements of finger gesture lever-
aging commodity WiFi. In this section, we discuss the pre-
liminaries, design challenges and goals, system overview, and
the core components of the system.

3.1 Preliminaries and Challenges
WiFi has been evolving from providing laptop connec-

tivity to connecting all kinds of mobile and smart devices
with higher speed and more advanced technologies. It has
resulted in the prevalence of WiFi devices and ubiquitous
coverage of WiFi network, which provides the opportunity
to extend WiFi’s capabilities beyond communication, par-
ticularly in sensing the physical environment. When the
wireless signal propagates through space, any environment
changes, either small scale or large scale, affect the received
wireless signal, which is commonly known as shadowing and
small-scale fading. With measurable changes in the received
signals, activities in the physical environment could be po-
tentially inferred. In particular, the 802.11a/g/n/ac employs
OFDM technology which partitions the relatively wideband
20MHz channel into 52 subcarriers and provides detailed
channel state information (CSI) of each subcarrier. The
relative ”narrow-band” subcarriers are very sensitive to the
small movements in physical environment which results in
the changes of CSI. On the contrary, the traditionally used
received signal strength (RSS) is a coarse-grained informa-
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Figure 2: CSI patterns of Circle Left under different

environments.
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Figure 3: CSI pattern of Circle Left performed by

different users.

tion which provides averaged power in the received signal
over the whole channel bandwidth and may not capture such
changes. We are thus motivated to reuse existing WiFi in-
frastructure to sense and identify subtle movements of finger
gestures by leveraging the detailed CSI provided by the com-
modity WiFi device.

Figure 1 shows the CSI amplitude of two subcarriers(i.e.,
subcarrier 15 and 20) when a participant is repeatedly doing
two finger gestures (circle left and zoom in) in front of the
laptop. The CSI is extracted from the laptop that connected
to a commercial AP in a 802.11n network. We observe that
the CSI amplitude of those two subcarriers exhibits obvi-
ous periodic patterns and each of the finger gestures can
be distinguished by its unique CSI pattern. This observa-
tion strongly indicates that the detailed CSI extracted from
commodity WiFi could be analyzed for fine-grained figure
gesture recognition.

Accurately discerning the finger gestures is however chal-
lenging because of the interferences from the surrounding en-
vironment. The interferences could come from the environ-
ment changes such as furniture change and people moving
around. Such changes, for example a table/chair is moved
to a different place or a person is walking around in the en-
vironment, alter the multipath environment which leads to
construction or destruction (based on individual subcarrier
phase shifts) effect in the combined signals at the receiver.
Such effect could also be captured by the detailed CSI (due
to subcarrier’s relative ”narrow-band” nature) and creates
distortion of the CSI pattern. Figure 2 illustrates such CSI
pattern distortion at one subcarrier when a participant is do-
ing circle left gesture with and without environment changes.
We observe that the CSI patterns in the dash windows are
heavily distorted due to one person is walking around in the
environment. Such distortion could significantly degrade the
accuracy of gesture recognition.

Moreover, the finger gesture is subjected to individual di-
versity and gesture inconsistency. Different people may have
different finger and hand size, movement pace, and habit to
perform finger gestures. Even for the same person, she/he
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Figure 4: Overview of system flow.

could perform the same gesture slightly different from time
to time due to lack of gesture consistency. Figure 3 shows the
captured CSI amplitude of one subcarrier for the same ges-
ture performed by two different users. Although the shape
of these two CSI traces exhibits certain similarity, the length
and some details of the CSI pattern are very different due to
different finger movement speed and gesture inconsistency.
In particular, the second user perform finger gesture much
faster than the first one, and the patterns at the head and
tail of the CSI traces have clear difference. The individ-
ual diversity and gesture inconsistency thus could seriously
affect the robustness of the recognition system.

3.2 Design Goals
To accurately recognize the fine-grained finger gestures

by using the detailed CSI from a single commodity WiFi
device, the design and implementation of our system involve
a number of challenges:

Easily Deployable. The system should be easily deploy-
able on existing commodity WiFi without using any dedi-
cated or specialized hardware or requiring users to wear any
physical sensors. It should work with both LOS and NLOS
scenarios and only utilize existing WiFi traffic or beacons at
the deployed AP without dedicated user generated traffic.

Robust to Environmental Change. The interferences
from the surrounding environment could dynamically change
the detailed CSI. Our system should be able to provide ac-
curate finger gesture recognition by mitigating interferences
such as furniture change, people moving around, and body
movements of the user.

Resilient to Individual Diversity and Gesture In-

consistency. Once the system is setup, it should be able to
be used by multiple users without user-specific calibration.
It thus should be resilient to both individual diversity and
gesture variation due to lack of consistency.

3.3 System Overview
The basic idea of our system is to examine the unique

pattern exhibited in the CSI measurements that extracted
from a single commodity WiFi device. As each finger ges-
ture has its unique CSI pattern (as shown in Fig. 1), the
gesture recognition could be done by matching the CSI pat-

tern against the gesture profiles. Figure 4 shows the flow
of our system. The system takes the time-series CSI mea-
surements extracted from one single commodity WiFi de-
vice with its connected AP as input. It can reuse existing
network traffic, such as WiFi beaconing signals, or system-
generated periodic traffic (if network traffic is insufficient) to
extract the detailed CSI. The measured CSI is then prepro-
cessed to remove out-of-band noise via a butterworth filter
and to normalize the CSI traces to the same scale.

The core of our system, WiFinger, consists of the En-
vironmental Noise Removal and the Gesture Pattern Ex-
traction. Environmental noise removal encompasses two dif-
ferent techniques to address the challenge of environmental
interferences. It first employs Multipath Mitigation to miti-
gate the interference stemmed from the environment changes
such as moved furniture and/or people moving around. It
then utilizes Wavelet Based Denoising to further remove the
noise by decomposing signals into approximation coefficients
and detail coefficients. A dynamic thresholding method is
applied to the detail coefficients to remove the noisy com-
ponents while keeping sufficient details of the CSI pattern.
After that, the system performs movement segmentation to
separate the CSI measurements to each finger gesture.

Next, our system performs gesture pattern extraction by
utilizing Principal Component Identification and Critical Sub-
carrier Selection. Principal component identification is used
to capture the intrinsic user gesture behaviors by identi-
fying the CSI components which remain stable within the
user’s finger gestures. The identified principal components
are usually invariant in the presence extensive variations in
the user’s gesture, and hence resilient to individual diversity
and gesture inconsistency. Our system then uses critical
subcarrier selection to choose the subcarriers that have high
sensitivity to the subtle movements of fingers gestures for
gesture recognition.

At last, our system recognizes gestures by calculating the
similarity between the extracted CSI pattern and the pre-
constructed gesture profiles. As the CSI of multiple subcarri-
ers can be used for extracting CSI pattern,Muti-Dimensional
Dynamic Time Warping (MD-DTW) is used for similarity
calculation by aligning CSI pattern to the gesture profiles
while correcting for difference in finger movement speed.
The one with the profile in the library that has the highest
and also sufficient similarity with the testing CSI pattern is
then identified as the recognized gesture.

To construct gesture profile, our system could utilize ei-
ther a supervised or semisupervised approach. For example,
one user could perform each finger gesture several times of-
fline and then label the corresponding extracted CSI pattern
in the profile library. The system can also continuously mon-
itoring user’s gestures and identify multiple similar instances
of CSI pattern without a matching profile. The user then
could provide feedback to label such CSI pattern and deposit
it to the profile library for subsequent gesture recognition.
Moreover, the system could also use the semisupervised ap-
proach to update the CSI pattern when the gesture evolves
to a slightly different version.

3.4 Environmental Noise Removal
In this subsection, we present the details of two techniques

the system used to mitigate the interferences from the sur-
rounding environment: multipath mitigation and wavelet
based denoising.
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vironment change.

3.4.1 Multi-Path Mitigation

Multipath mitigation aims to remove the signal compo-
nents that arrive at the receiver through longer multipath
propagation. As the environment changes such as a ta-
ble/chair is moved to a different place or a person is walking
around will reflect the wireless signal and also create ad-
ditional multipath, these reflected signals via created multi-
path will distort the CSI pattern of a finger gesture. Remov-
ing these reflected signal components could mitigate such
interferences and hence makes the system robust to the en-
vironment changes. In particular, the signal reflection via
multipath usually has longer propagation delays before ar-
riving at the receiver. By transferring the frequency domain
CSI into time-domain power delay profile, we could remove
the signal components that have longer delay to mitigate the
effect of the changed multipath.

Given the CSI measured at each subcarrier in frequency
domain, we can obtain the power delay profile by applying
the n-point Inverse Fast Fourier Transform (IFFT) [35]. The
commonly used power delay profile is described as:

h(t) =

N∑

i=1

aie
−jθiδ(t− ti) (1)

where i denotes the sequence number of total N multipath
channel, ai, θi and ti are the amplitude, phase angle and sig-
nal propagation time delay of ith path, and δ(t) is the Dirac
delta function. Power delay profile gives the intensity of a
signal received through a multi-path channel as a function
of time delay.

Figure 5 shows the power delay profile with 60-point IFFT
for the same gesture (i.e., circle left) under the scenarios with
and without people moving around in the environment. We
observe that the signal components in these two dash win-
dows have obvious difference due to the environment change.
We thus remove the signal components with large time de-
lay (i.e., the part on the right side of the dash line in Fig-
ure 5) to retain the CSI pattern of the finger gesture while
mitigating the effect of the changed multipath environment.
After removing the signal components with larger delay, we
apply an FFT transformation to covert the trimmed pro-
file to frequency domain CSI. Previous study shows general
indoor environment has the maximum delay less than 500
ns [15]. We use this value as a baseline for removing the
signal components with longer delay, shown as the dash line
in Figure 5.

3.4.2 Wavelet Based Denoising

Wavelet based denoising is used to further remove the
noises presented in the collected CSI measurements. These

Original Signal

Low Pass

High Pass

L[1]

H[1]

L[4]

H[4]

Apply Thresholding
Decomposing

Reconstruction

Figure 6: Illustration of Wavelet based denoising.

interferences could come from various sources such as the
nearby electric devices and WiFi devices’ inner noise. It is
based on the Discrete Wavelet Transform (DWT) which an-
alyzes the signal in both time and frequency domain and
doesn’t make any assumption about the nature of the sig-
nal. The DWT decomposes signals into approximation co-
efficients and detail coefficients. While the approximation
coefficients describe the shape/trend of the signal which re-
tain large scale characteristic of the CSI pattern, the detail
coefficients capture the low-scale components which repre-
sent both high frequency noise and the fine details of the
CSI pattern. As we are interested in removing the high
frequency noise components while trying to keep sufficient
details of CSI pattern for differentiating similar gestures, a
dynamic thresholding is applied to the detail coefficients to
remove the noisy components.

In particular, the wavelet based denoising includes three
steps: decomposition, thresholding, and reconstruction. As
shown in Figure 6, we first run the DWT based signal de-
composition recursively by four levels with Symlet wavelet
filter [26]. The DWT then yields both approximation coeffi-
cients αJ (with J = 4) and a sequence of detailed coefficients

β1, β2, ...β(J). Each level of DWT coefficients are computed
based on the following equations:

α
(J)
k = 〈xn, g

(J)

n−2Jk
〉n =

∑

n∈Z

xn g
(J)

n−2Jk
, J ∈ Z (2)

β
(ℓ)
k = 〈xn, h

(ℓ)

n−2ℓk
〉n =

∑

n∈Z

xn h
(ℓ)

n−2ℓk
, ℓ ∈ {1, 2, ..., J} (3)

where xn is the nth input point,〈.〉 is the dot product op-
eration, and wavelet basis represents by two sets of discrete
orthogonal functions g’s and h’s.

We then apply dynamic thresholding to each level of detail
coefficients β1, β2, ...β(J) to remove their noisy components.
Finally, by combining all the resulting coefficients (i.e., the
approximation coefficients and the detail coefficients after
noisy removal), we reconstruct the final denoised CSI mea-
surements with the inverse DWT. The inverse DWT is given
by following formula:

xn =
∑

k∈Z

α
(J)
k g

(J)

n−2Jk
+

J∑

ℓ=1

∑

k∈Z

β
(ℓ)
k h

(ℓ)

n−2ℓk
(4)

The reconstructed measurements enable us to remove the
noise components while keeping the detailed patterns of the
CSI. This could facilitate accurate gesture recognition, espe-
cially for those gestures with similar shape of CSI patterns.
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3.5 Gesture Pattern Extraction
We next detail the gesture pattern extraction component

which is used to identify the principal components of CSI
patterns and to choose critical subcarriers for accurate ges-
ture recognition.

3.5.1 Principal Component Identification

The principal component identification borrows the idea
of the intrinsic gesture behavior of the user in signature ver-
ification [25]. In particular, the CSI measurements of each
finger gesture could be divided into several gesture compo-
nents. Due to the individual diversity and gesture incon-
sistency, only part of these components are invariant across
the same set of finger gestures that one user performed. We
refer such components as principal components which cap-
ture the intrinsic gesture behavior of the user. Our system
thus extracts these principal components to facilitate ges-
ture recognition for improving the resilience to individual
diversity and gesture inconsistency.

To identify the principal components of the CSI pattern,
we examine and compare multiple instances of the same ges-
ture. In particular, our method takes two instances of CSI
measurements and compares them to find the best alignment
by calculating a cost matrix and discovering the lowest cost
route. The resulted lowest cost route could be represented
by a coupling sequence in which the direct matching sam-
ples denote the components without significant distortion
between two instances. We thus incorporate these direct
matching samples into a weight vector to represent the prin-
cipal components of the finger gesture. We run this process
repeatedly between different pairs of instances that are avail-
able during the profile construction phase, and then average
over the resulting weight vectors to obtain the principal com-
ponents of each finger gesture.

Following shows the details of the principal component
identification algorithm. After environmental noise removal,
we first interpolated CSI measurements of each gesture in-
stance to a fixed length L. We then assume {ci,1 ≤ i ≤ N}
is a set of interpolated CSI measurements with the fixed
length L extracted from N gesture instances. The weight
vector derived from a pair of instances ci and cj can be de-
scribed as: w

ci,cj
l where i 6= j and 1 ≤ l ≤ L. We then

use the coupling sequence which is the alignment between ci
and cj to estimate the weight value. All the direct matching
samples in the coupling sequence are considered as the prin-
cipal component candidates which represent the consistent
gesture segments between two CSI instances. We simply
use 1 as the weight if it is a principal component, and assign
a weight 0 otherwise. At last, we generalize the principal
components by averaging the weight vectors over each pair
of CSI instances. Each averaged weight value ranges from 0
to 1 indicating the consistency of the corresponding segment
of the CSI measurements. And a larger weight value means
the corresponding segment is more stable when performing
finger gestures. Our system thus values the segments with
higher averaged weights more significantly during the ges-
ture identification procedure as they represent the intrinsic
gesture behavior.

Figure 7 shows one example on the process of the principal
component identification using two gesture instances. We
first calculate the cost matrix between these two instances,
as shown in Figure 7(b). Based on the coupling sequence
shown in the cost matrix, we identify these direct matching

Measurement 1

Measurement 2

(a) CSI of two gesture instances (b) Cost Matrix

Principal Component

(c) Identified principal Components

Figure 7: Illustration of principal component iden-

tification steps.
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Figure 8: One example of subcarrier sensitivity to

the finger gesture of Circle Left.

samples as the candidates of the principal components of the
gesture. We then map these direct matching samples back
to the CSI measurements of those two instances. The iden-
tified principal components in these two instances are high-
lighted as black color, as shown in Figure 7(c). During the
gesture recognition phase, the principal components will be
assigned with higher weights while the rest will be assigned
with lower weights. The principal components identification
thus could effectively capture the intrinsic gesture behaviors
and improve the robustness of the system.

3.5.2 Critical Subcarrier Selection

Due to the frequency diversity, different subcarriers have
different sensitivity to the subtle movements of finger ges-
tures [17]. Figure 8 illustrates an example of time series CSI
changes for 30 subcarriers when performing circle left ges-
ture. We observe that the subcarriers with smaller indices
are more sensitive to the circle left gesture, while the CSI
from the higher subcarrier indices presents less changes. It
is thus desire to assign more weights to these subcarriers
with higher sensitivity for gesture recognition. Specifically,
we calculate the variance of the CSI in a moving window in
time series to quantify the sensitivity of the subcarriers to
the finger gesture. We then filter out these subcarriers with
small variance and use the variance values as the weights for
the remain subcarriers.

3.6 Gesture Identification
As one user may perform gestures with different speeds

and multiple subcarriers could be used for gesture identifi-
cation, we utilize Muti-Dimensional Dynamic Time Warp-
ing (MD-DTW) [31] to align the CSI pattern to the gesture
profiles in the library. MD-DTW allows us to overcome the
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different speed problem by focusing on shifts in the CSI pat-
tern such as the peaks and valleys, as evidenced by prior
work [31]. It thus provides a robust metric for measuring
the similarity between the testing CSI pattern and the ges-
ture profiles among multiple subcarriers. In particular, the
similarity is quantified by the Euclidean distance of the op-
timal warping path between the CSI pattern and the gesture
profile. It is shown as

d(qi, cj) =
M∑

m=1

(qi,m − cj,m)2 (5)

where Q = q1, q2, ..., qm and C = c1, c2, ..., cm are two CSI
patterns where M is the number of chosen subcarriers. Dur-
ing gesture identification, our system uses MD-DTW to cal-
culate the similarity between the testing CSI pattern and
each of the known gesture profile in the profile library. The
one with the highest and sufficient similarity to the CSI pat-
tern is identified as recognized gesture. The CSI pattern
with insufficient similarity to any known gesture profile is
identified as an unknown gesture, which could then trigger
user to label it in the profile library.

4. SYSTEM IMPLEMENTATION

4.1 Data Preprocessing
Human gesticulation is usually moving at a lower pace

with the range between 0.3Hz and 4.5Hz [32]. And some of
the noises have much higher frequency compare to finger ges-
ture movements. We thus can apply a band-pass filter on the
raw CSI measurements to remove these out-of-band noises.
We choose Butterworth filter for band pass filtering as it has
a maximally flat frequency response in the pass band which
will not cause large distortion over finger gesture signal. In
our system, we choose a 2-order Butterworth bandpass filter
with cut-off frequency at 0.2Hz and 5Hz. After band-pass
filtering, our system performs data normalization to scale
different CSI traces in the same range. Data normalization
could effectively overcome the problem of different transmis-
sion power of WiFi devices.

4.2 Segmentation
The system requires a user to have a short static interval

between gestures to serve as the sentinel signal. Our system
then can identify the movement of a gesture by detecting
the static interval. In detail, we accumulate the amplitude
differential between adjacent time points within each sliding
window. The accumulated value is then compared to a em-
pirical threshold for determining the sentinel signal for CSI
trace segmentation.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our WiFin-

ger system using a commodity WiFi device in both office and
home environments with multiple participants under various
conditions.

5.1 Experimental Setup

5.1.1 Device and Network

We conduct experiments with a single WiFi device (i.e.,
Dell LATITUDE E5540 Laptop) connected to a commer-
cial wireless Access Point (LINKSYS E2500 N600 Wire-

Access Point

WiFi Device

Personnel

(a) Office (b) Home

Figure 9: Illustration of experimental setup.

1) Zoom Out 2) Zoom In 3) Circle Left 4) Circle Right

5) Swipe Left 6) Swipe Right 7) Flip Up 8) Flip Down

Figure 10: Illustration of eight finger gestures.

less Router) in an 802.11n WiFi network. The laptop runs
Ubuntu 10.04 LTS and is equipped with an Intel WiFi Link
5300 for extracting CSI measurements [13]. The package
transmission rate is set to 20 pkts/s. We will discuss the
impact of packet rate on overall recognition accuracy in Sec-
tion 5.6. For each packet, we extract CSI for 30 subcarrier
groups, which are evenly distributed in the 56 subcarriers of
a 20MHz channel.

5.1.2 Environments and Finger Gestures

We conduct experiments in both an office and an apart-
ment environments with five participants. The experimental
setup in these two environments are shown in Figure 9. The
office has the size of about 9 ft by 9 ft with three tables
and chairs, and some electronic devices inside, whereas the
apartment is about 16 ft by 13 ft with regular living room
furniture setup, such as dining table, book shelf, sofa, and
TV. The office environment represents a more compact space
filled with furniture, while the apartment setup describes a
typical home environment with larger space. When the par-
ticipant is performing the finger gesture, she/he is sitting on
the sofa in the apartment environment and sitting in front
of the table in office environment respectively. The AP and
the laptop are placed at two sides of the sofa and table, as
shown in Figure 9.

We evaluate the performance of our system with eight
commonly used finger gestures including swipe left, swipe
right, zoom in, room out, circle left, circle right, flip up, and
flip down, as shown in Figure 10. These gestures are also
widely used in current human-computer interaction systems
such as Microsoft Kinect or Leap Motion. Each participant
performs one gesture fifty times in office and apartment en-
vironments respectively. We use ten instances of each finger
gesture to extract the CSI pattern for building the gesture
profile. To test the robustness of our system to environ-
ment changes, we experiment with both furniture move and
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Figure 11: Confusion matrix of finger gesture recog-

nition under different environments.

people walking around scenarios. In particular, when the
participant is performing finger gesture, a second person is
randomly walking around within the environment to create
interference. Examples of the walking trajectories are shown
in dash curve in Figure 9. For the furniture change, we move
the chairs and tables from one place to another inside the
room.

5.1.3 Metrics

We use both confusion matrix and recognition accuracy
to evaluate the performance of our system.

Confusion Matrix. Each column represents the finger
gesture that was classified by our system and each row shows
finger gestures performed the user. Each cell in the confusion
matrix represents the percentage of finger gesture in the row
that was classified as the gestures in the column.

Recognition Accuracy. The percentage of the finger
gestures correctly classified by our system.

5.2 Overall Performance
Figure 11 shows the confusion matrix of finger gesture

recognition under both home and office environments. We
observe that in both environments, our system achieves an
overall recognition accuracy over 93% with the standard de-
viation at about 1.5%. By comparing the details of each fin-
ger gesture recognition in these two environments, we find
that the recognition accuracy distribution are similar. In
both environments, the swipe left and right have the highest
recognition accuracy, whereas the flip up and down have the
lowest accuracy. In particular, the swipe left achieves 96%
and 95% accuracy in home and office environments respec-
tively. This is possibly because of the relative larger finger
movements involved in swipe left and right. Consequently,
more finger movement details could be captured by CSI for
differentiating from other similar finger gestures. The above
results show that our system could provide high accuracy in
recognizing finger gestures by using only a single WiFi de-
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Figure 13: Recognition accuracy under the environ-

ment changes.

vice. The recognition accuracy could be further improved,
for example, by using multiple available devices or the WiFi
device equipped with multiple antennas.

We also compare the performance of using CSI to that of
using RSS for finger gesture recognition. As RSS is the more
sensitive to the physical movements when the transmitter
and receiver are closer due to the log distance propagation,
we place the WiFi device and the AP very close to each
other (i.e., 3 ft) and compare the performance of CSI-based
and RSS-based recognition in the same setup. Figure 12
illustrates the performance comparison of the overall recog-
nition accuracy with each finger gesture tested for fifty times
in each of these two environments. We observe that under
the same setup, the CSI based method could achieve around
95% accuracy in both environments, whereas the RSS based
method has only 76% recognition accuracy. It indicates that
the detailed CSI could provide more fine-grained informa-
tion than that of RSS, and can result in much better gesture
recognition accuracy.

5.3 Impact of Environment Change
We next evaluate the robustness of our system to the

environment changes. Specifically, we introduce environ-
ment changes including furniture change and people walk-
ing around that described in the experimental setup when
the participant is doing finger gestures. We then compare
the performance of our system with and without using en-
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vironmental noise removal technique. Figure 13 depicts the
performance comparison for each gesture recognition in the
home environment. We find that the environmental noise re-
moval technique improves the performance significantly for
each of the finger gesture under both furniture change and
people walking around scenarios. Moreover, by comparing
Figure 13 with Figure 11(a), we observe that the perfor-
mance doesn’t have obvious degradation due to the use of
environmental noise removal technique. In addition, we find
that people walking around has larger impact on the CSI
measurements, as indicated by the performance under the
case without using environmental noise removal. This study
demonstrates that our system can effectively mitigate the
impact from the surrounding objects or people and is ro-
bust to the environment changes.

5.4 Impact of Individual Diversity
We further test the resilience of our system to individ-

ual diversity by applying the gesture profile built from one
participant to another participant. We compare the perfor-
mance of our system to the one without using the gesture
pattern extraction method. Figure 14 presents the perfor-
mance comparison for each finger gesture under individual
diversity. We observe that without using gesture pattern
extraction method, the performance degrades dramatically
due to individual diversity and gesture inconsistency. Our
system, with the gesture pattern extraction, provides much
higher recognition accuracy than that of without using ges-
ture pattern extraction method. For example, our system
could improve the recognition accuracy by over 10% for most
of the finger gestures. These results show that by incorporat-
ing the pattern extraction method, our system is resilient to
individual diversity. Our system, once setup, could be used
by multiple users without user-specific calibration.

5.5 Impact of Training Size
When building the profile for each finger gesture, our sys-

tem requires to extract the CSI patterns from multiple ges-
ture instances. We refer such number as the training size.
Figure 15 studies the impact of training size to the per-
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formance of our system. Overall, we observe that our sys-
tem could achieve considerable accuracy with a few tracing
instances. In particular, with only one training size, our
system achieves more than 80% of the recognition accuracy
with one training instance. And the accuracy is improved to
over 90% with five training instances. This result shows that
our system could provide accurate gesture recognition with
only a few training instances and hence doesn’t incur high
overhead on building the gesture profile, especially when the
built profile from one user could be used by others.

5.6 Impact of Packet Rate
As a higher packet transmission rate results in more CSI

measurements to capture the finger gestures, we are thus in-
terested in whether existing WiFi traffic is sufficient to pro-
vide accurate gesture recognition. We experiment with four
packet transmission rates, 5 pkts/s, 10 pkts/s, 15 pkts/s,
and 20 pkts/s. The results are shown in Figure 16. We
observe that a higher transmission rate results in a better
recognition accuracy. Moreover, with 10 pkt/s transmission
rate, our system is able to achieve more than 90% recog-
nition accuracy. This demonstrates that our system could
work with very low packet transmission rate. As the com-
mercial AP sends beacon signals at 10 pkts/s, our system
thus can reuse existing WiFi beacon signals for accurate ges-
ture recognition.

5.7 Impact of NLOS
We study the impact of NLOS by placing the WiFi device

and the AP in two connected rooms with the door closed.
When the door is open, there exists LOS between the AP
and the WiFi device. Figure 17 presents the performance
comparison under the NLOS and LOS scenarios in both
office and home environments. Results show that NLOS
slightly degrades the system performance. Still, NLOS sce-
nario has the overall recognition accuracy at around 90% in
both office and home environments. It demonstrates that
the proposed system could even work under the NLOS sce-
nario. This allows us to deploy the proposed system to a
wider range of application domains.
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6. CONCLUSION
In this paper, we exploit the prevalence of WiFi devices

and networks and design a system called WiFinger to per-
form fine-grained finger gesture recognition by utilizing the
detailed CSI available in commodity WiFi devices. We find
that CSI can capture the subtle movements of finger ges-
tures. Our system benefits from such observation and ex-
amines the unique pattern exhibits in the detailed CSI for
gesture recognition. To address the challenge of signal dy-
namic due to the environment changes, we devise environ-
ment noise removal mechanism to filter out the environmen-
tal noise while keeping the CSI pattern resulted from the
finger gesture. Moreover, we propose to capture the intrin-
sic gesture behavior and to select critical subcarriers for ac-
curate gesture recognition. Extensive experiments in both
home and office environments demonstrate that WiFinger is
effective in distinguishing a number of finger gestures, and
that it can achieve over 93% recognition accuracy. In addi-
tion, we show that our system can work with WiFi beacon
signals and provide considerable recognition accuracy under
NLOS scenario.
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